Skip to contents

A Darwin Core Archive consists of several pieces to ensure a dataset is structured correctly (and can be restructured correctly in the future). These pieces include the dataset, a metadata statement, and an xml file detailing how the columns in the data relate to each other.

corella is designed to check whether a dataset conforms to Darwin Core standard. This involves two main steps: * Ensuring that a dataset uses valid Darwin Core terms as column names * Checking that the data in each column is the correct type for the specified Darwin Core term

This vignette gives additional information about the second step of checking each column’s data.

Checking individual terms

corella consists of many internal check_ functions. Each one runs basic validation checks on the specified column to ensure the data conforms to the Darwin Core term’s expected data type.

For example, here is a very small dataset with two observations of galahs (Eolophus roseicapilla) (class character), their latitude and longitude coordinates (class numeric), and a location description in the column place (class character).

## Error in get(paste0(generic, ".", class), envir = get_method_env()) : 
##   object 'type_sum.accel' not found
library(tibble)

df <- tibble::tibble(
  name = c("Eolophus roseicapilla", "Eolophus roseicapilla"),
  latitude = c(-35.310, -35.273),
  longitude = c(149.125, 149.133),
  place = c("a big tree", "an open field")
)

df
## # A tibble: 2 × 4
##   name                  latitude longitude place        
##   <chr>                    <dbl>     <dbl> <chr>        
## 1 Eolophus roseicapilla    -35.3      149. a big tree   
## 2 Eolophus roseicapilla    -35.3      149. an open field

I can use the function use_coordinates() to specify which of my columns refer to the valid Darwin Core terms decimalLatitude and decimalLongitude. I have intentionally added the wrong column place as decimalLatitude. corella will return an error because decimalLatitude and decimalLatitude fields must be numeric in Darwin Core standard. This error comes from a small internal checking function called check_decimalLatitude().

df |>
  use_coordinates(decimalLatitude = place, # wrong column
                  decimalLongitude = longitude)
## ⠙ Checking 2 columns: decimalLatitude and decimalLongitude
##  Checking 2 columns: decimalLatitude and decimalLongitude [644ms]
## 
## Error in `check_decimalLatitude()`:
## ! decimalLatitude must be a numeric vector, not character.

Supported terms

corella contains internal check_ functions for all individual Darwin Core terms that are supported. These are as follows:

Supported Darwin Core terms
and their associated functions
Term check function use function
basisOfRecord check_basisOfRecord() use_occurrences()
occurrenceID check_occurrenceID() use_occurrences()
scientificName check_scientificName() use_scientific_name()
decimalLatitude check_decimalLatitude() use_coordinates()
decimalLongitude check_decimalLongitude() use_coordinates()
geodeticDatum check_geodeticDatum() use_coordinates()
coordinateUncertaintyInMeters check_coordinateUncertaintyInMeters() use_coordinates()
eventDate check_eventDate() use_datetime()
continent check_continent() use_locality()
country check_country() use_locality()
countryCode check_countryCode() use_locality()
stateProvince check_stateProvince() use_locality()
locality check_locality() use_locality()
kingdom check_kingdom() use_taxonomy()
phylum check_phylum() use_taxonomy()
class check_class() use_taxonomy()
order check_order() use_taxonomy()
family check_family() use_taxonomy()
genus check_genus() use_taxonomy()
specificEpithet check_specificEpithet() use_taxonomy()
vernacularName check_vernacularName() use_taxonomy()
individualCount check_individualCount() use_abundance()
organismQuantity check_organismQuantity() use_abundance()
organismQuantityType check_organismQuantityType() use_abundance()
organismQuantity check_organismQuantity() use_abundance()
datasetID check_datasetID() use_collection()
datasetName check_datasetName() use_collection()
catalogNumber check_catalogNumber() use_collection()
coordinatePrecision check_coordinatePrecision() use_coordinates()
taxonRank check_taxonRank() use_scientific_name()
scientificNameAuthorship check_scientificNameAuthorship() use_scientific_name()
year check_year() use_datetime()
month check_month() use_datetime()
day check_day() use_datetime()
eventTime check_eventTime() use_datetime()
individualID check_individualID() use_individual_traits()
lifeStage check_lifeStage() use_individual_traits()
sex check_sex() use_individual_traits()
vitality check_vitality() use_individual_traits()
reproductiveCondition check_reproductiveCondition() use_individual_traits()
recordedBy check_recordedBy() use_observer()
recordedByID check_recordedByID() use_observer()
eventID check_eventID() use_events()
eventType check_eventType() use_events()
parentEventID check_parentEventID() use_events()


When a user specifies a column to a matching Darwin Core term (or the column/term is detected by corella automatically) in a use_ function, the use_ function triggers that matching term’s check_ function. This process ensures that the data is correctly formatted prior to being saved in a Darwin Core Archive.

It’s useful to know that these internal, individual check_ functions exist because they are the building blocks of a full suite of checks, which users can run with check_dataset().

Checking a full dataset

For users who are familiar with Darwin Core standards, or who have datasets that already conform to Darwin Core standards (or are very close), it might be more convenient to run many checks at one time.

Users can use the check_dataset() function to run a “test suite” on their dataset. check_dataset() detects all columns that match valid Darwin Core terms, and runs all matching check_ functions all at once, interactively, much like devtools::test() or devtools::check().

The output of check_dataset() returns: * A summary table of whether each matching column’s check passed or failed * The number of errors and passed columns * Whether the data meets minimum Darwin Core requirements * The first 5 error messages returned by checks

df <- tibble::tibble(
  decimalLatitude = c(-35.310, "-35.273"), # deliberate error for demonstration purposes
  decimalLongitude = c(149.125, 149.133),
  date = c("14-01-2023", "15-01-2023"),
  individualCount = c(0, 2),
  scientificName = c("Callocephalon fimbriatum", "Eolophus roseicapilla"),
  country = c("AU", "AU"),
  occurrenceStatus = c("present", "present")
  )

df |>
  check_dataset()
##  Testing data
##  | E P | Column
## ⠙ | 0  decimalLatitude
##  | 3  | decimalLatitude   [51ms]
## 
## ⠙ | 0  decimalLongitude
##  | 0  | decimalLongitude  [9ms]
## 
## ⠙ | 0  individualCount
## ⠹ | 1  | individualCount
##  | 1  | individualCount   [33ms]
## 
## ⠙ | 0  scientificName
##  | 0  | scientificName    [9ms]
## 
## ⠙ | 0  country
##  | 1  | country           [25ms]
## 
## ══ Results ═════════════════════════════════════════════════════════════════════
## 
## [ Errors: 5 | Pass: 2 ]
## 
##  Data does not meet minimum Darwin Core requirements
##  Use `suggest_workflow()` to see more information.
## ── Error in decimalLatitude ────────────────────────────────────────────────────
## 
## decimalLatitude must be a numeric vector, not character.
## decimalLatitude must be a numeric vector, not character.
## Value is outside of expected range in decimalLatitude.
##  Column contains values outside of -90 <= x <= 90.
## ── Error in individualCount ────────────────────────────────────────────────────
## 
## individualCount values do not match occurrenceStatus.
##  Found 1 row where individualCount = 0 but occurrenceStatus = "present".
## ── Error in country ────────────────────────────────────────────────────────────
## 
## Unexpected value in country.
##  Invalid value: "AU"

Note that check_dataset() currently only accepts occurrence-level datasets. Datasets with hierarchical events data (eg multiple or repeated Surveys, Site Locations) are not currently supported.

Users have options

corella offers two options for checking a dataset, which we have detailed above: Running individual checks through use_ functions, or running a “test suite” with check_dataset(). We hope that these alternative options provide users with different options for their workflow, allowing them to choose their favourite method or switch between methods as they standardise their data.